The Role of a Seeds Calorific Value on Seed Selection by *Harpalus pensylvanicus*

Joshua Greene and Dr. Jeffrey Law

Natural Science Department

Introduction and Background

- Weed management with pesticides are costly and deleterious to both human and environmental health.
- An alternative weed management tactic is Integrated Weed Management (IWM).
- Ground-dwelling invertebrates, especially *H. pensylvanicus*, are effective weed seed predators.
- Reduce weed seed stocks by 90% and populations can consume 1000 m³ per year.
- Seed characteristic preferences of *H. pensylvanicus* greatly affect their seed eating rates. But we know very little on how the calorific value of the seed may affect it.

Research Objectives and Hypothesis

1. Determine how much of a role a seed’s calorific value plays on the diet choice of *H. pensylvanicus*
2. Examine how rearing in a laboratory setting will affect *H. pensylvanicus* feeding behavior
3. Determine the potential of *H. pensylvanicus* as a targeted biological control agent

Hypothesis: *H. pensylvanicus* will show a behavioral response to the seeds they were reared on when tested for seed preference despite the calorific values of the others seed available to them.

Materials and Methods

- Beetle collection
- Feeding trials
 - Three feeding groups: control, giant foxtail & velvetleaf (n=12 or 15), kept on diet for 39 days
- Preference test
 - Arena trials w/ four different seed choices; recorded foraging choices for 10 min
- Seed calorific value determination
 - Determined the seed calorific value of four different weed species using a Parr Plain Jacket Calorimeter (n=5)

Results

- There was no significant difference among the death rates in the three feeding groups (One-way ANOVA, p= 0.77).
- There was a significant difference between the seed calorific values of the weed species (One-way ANOVA, p= 0.02).
 - Greatest seed calorific value - ragweed (26.575 kJ/g); lowest seed calorific value – pigweed (21.706 kJ/g)
 - No significant difference between the seeds used in the two experimental feeding groups (p= 0.996)

Objective 1: There was no observed correlation between a seeds calorific value and a beetles foraging choice.
- Other seed characteristics may have a greater role in determining *H. pensylvanicus* foraging choice and rate (seed size, seed coat hardness, etc.).

Objective 2: Laboratory diet rearing showed trends of affecting *H. pensylvanicus* feeding behavior:
- Previous studies show a 0% preference for velvetleaf seeds by *H. pensylvanicus*. In this study, *H. pensylvanicus* in the velvetleaf feeding group lived off of velvetleaf for over a month and had the lowest mortality rate (42%).
- Objective 3: The potential of *H. pensylvanicus* as a targeted biological control agent requires further investigation.
- Both experimental feeding groups did show trends of preference during the arena trial.

Discussion

- Future experiments should look into rearing larva on specific seed diets
- Future experiments should replicate this experiment with higher-quality preference tests i.e. cafeteria studies
- Calculate the calorific values of the other seeds they eat
- Better understand their foraging choices

References