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Flood events can reduce key fatty acid content of early-

stage benthic algal assemblages in an urban stream
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Abstract

Effects of urbanization on stream chemistry and biota have been widely examined. However, few studies quantify the effect
of urban stream characteristics on the biochemical properties of basal food resources, such as benthic algae, which can af-
fect aquatic consumers and food webs. A common feature of urban streams is the high frequency of short floods, which
may disrupt aquatic communities and their biotic controls. These disturbances can create algal assemblages low in biomass
and which remain in early successional stages. This study examined the effects of frequent flood events and macroinverte-
brate grazing on biomass, elemental stoichiometry, and essential fatty acid (EFA) concentration of early colonizing benthic
algal assemblages in an urban stream. Over a 3-week period in which two flood events occurred, algal biomass (chlorophyll-
a) and EFA profiles were each affected by floods, but the responses were weakly correlated. Concentrations of EFA molecules
essential for aquatic consumers, such as arachidonic acid (ARA) 20:4x6), eicosapentaenoic acid (EPA) 20:5x3), and docosa-
hexaenoic acid (DHA) 22:6x3) were greatly reduced after floods, potentially lessening algal nutritional quality. There were
no statistically significant differences in biomass or stoichiometry of benthic algae in assemblages under different grazing
regimes, suggesting hydrological factors played a greater role in their production and nutritional quality. This study pro-
vides evidence that flood-prone streams in urban landscapes may be susceptible to greatly altered biochemical profiles in
early colonizing benthic algal assemblages. Results also suggest that biochemically important compounds, such as EFAs, of-
fer valuable information on the quality of benthic algal assemblages under anthropogenic stress.

Key words: benthic algae; biofilm; fatty acids; grazing; flood events; urban stream.

1. Introduction

In stream ecosystems, benthic algae are important primary pro-
ducers and a key basal food resource for lotic food webs
(Lamberti 1996; Wetzel 2001). Algae colonize a diversity of ben-
thic surfaces, but exist within a benthic algae matrix, which is a
complex biofilm that also includes detritus, bacteria and fungi.
However, it is the algal cells in that matrix that are an especially
rich source of nutrients and essential fatty acids (EFAs) for con-
sumers (Brett and Müller-Navarra 1997; Torres-Ruiz et al. 2007,
2010). The rate at which algal assemblages colonize rocks and
other surfaces over time (their temporal succession) varies with

both physical and biological conditions in a river, which affect
both biomass and nutritional composition (Biggs 1996; Murdock
et al. 2004; Torres-Ruiz et al. 2007).

Early stage benthic algal assemblages become established
(the colonization phase) through immigration and growth, and
with time develop greater taxonomic and physical complexity,
unless losses occur due to flooding and/or grazing activity
(Biggs 1996). Changes in benthic algal assemblage biomass and
composition can occur over very short time-scales. One study of
early-colonizing benthic algae found that assemblages develop
and diversify in as short a period as 10 days (Jordan and Staley
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1976). Hillebrand and Sommer (2000) quantified measurable bio-
volume of algal cells after as little as 5 days of growth. Korte and
Blinn (1983) documented diatom colonization on bare substrata
within the first week in one forest stream, with succession pro-
ceeding from simple, adnate forms to more complex and di-
verse assemblages over three weeks. Most colonization studies
indicate that the biomass, taxonomic diversity, and physical
structure of early colonizing algal assemblages increase rapidly
within 1–2 weeks, with rates differing by season, nutrient condi-
tions, flooding, and other disturbances (Hoagland et al. 1982;
Peterson and Stevenson 1990; Stevenson 1990; Biggs 1996).

In urban streams, rates of benthic algal development may be
more severely affected by hydrological factors than biotic inter-
actions, due to more frequent and abrupt floods (Paul and
Meyer 2001). Urban streams are characterized by increased nu-
trient concentrations, reduced stream channel structure, al-
tered riparian habitat, and in particular, highly variable
hydrological regimes (Paul and Meyer 2001; Meyer et al. 2005;
Walsh et al. 2005). During wet periods, urban streams can expe-
rience a severe flood event as often as once a week, in contrast
to well-buffered streams within intact watersheds (Roy et al.
2005). These flood events predominantly affect loosely attached
and filamentous algal taxa in later stages of colonization, and
select for adnate and prostrate taxa typical of early stages
(Francoeur and Biggs 2006). Hydrological conditions in urban
streams thus create benthic algal assemblages typified by early
successional assemblages and a lack of climax assemblages
(Murdock et al. 2004).

Nearly all studies on early stage benthic algal assemblages
thus far have focused on taxonomic and/or biomass changes
over time. Recently, biochemical properties of some early suc-
cessional assemblages have also been recorded. Photosynthetic
activity and biochemically active components of algae can be
quantified after just 1 week of in situ incubation (Frost et al.
2007; Whorley and Francoeur 2013). However, no studies are
known which have examined early stage benthic algal assem-
blages in urban streams with regard to their nutritional quality.

Early studies on nutritional quality of benthic algal assem-
blages have largely been based on elemental stoichiometry (e.g.
C:N:P), and these findings are now well established (Stelzer and
Lamberti 2002; Fink et al. 2006; Arts et al. 2009; O’Brien and Wehr
2010). A few studies indicate that the nutritional quality of algae
may be more effectively assessed by measuring essential fatty
acid (EFA) concentrations (Torres-Ruiz et al. 2007; Brett et al.
2009). These data show that macroinvertebrate consumers re-
ceive greater nutritional benefit from algal than terrestrial matter,
due to greater concentrations of essential lipids (Brett et al. 2009;
Torres-Ruiz et al. 2010). Lipids in the form of EFAs from algae are
particularly critical for macroinvertebrate reproduction, develop-
ment, and growth (Arts et al. 2009). But thus far, studies measur-
ing EFAs have examined only established algal assemblages
(Bo€echat et al. 2011; Cashman et al. 2013; Bo€echat et al. 2014;
Honeyfield and Maloney 2015); thus little is known of benthic al-
gal fatty acid composition in early-stage assemblages. In urban
streams, stressors such as extreme and abrupt changes in dis-
charge and altered light availability can render assemblages in a
perpetual state of early colonization, which may alter nutritional
quality of basal food sources for the ecosystem (Hillebrand et al.
2004; Barbee 2005; Cashman et al. 2013).

It has been widely shown that macroinvertebrate grazing
can also limit algal growth in streams (Jacoby 1987; Biggs 1996)
as well as alter nutritional quality, as shown by increased C:N
and C:P ratios (Liess and Kahlert 2007). These biotic effects can
vary with assemblage composition and successional stage.

Villanueva and Modenutti (2004) demonstrated that later suc-
cessional stages with larger over-story algal taxa (e.g. filamen-
tous green algae or cyanobacteria) are more strongly affected by
grazing than were earlier successional assemblages composed
of tightly adherent diatom taxa. Furthermore, in some cases,
nutrient enrichment can moderate or minimize biomass losses
due to grazing activity (McCormick and Stevenson 1991;
Hillebrand and Kahlert 2001). Given the common conditions in
urban streams of both elevated nutrients and frequent floods,
the relative importance of biotic versus hydrological factors on
algal nutritional composition needs to be assessed.

We suggest that due to frequent floods, early successional
benthic algal assemblages typical of urban streams may provide
a limited source of EFAs for macroinvertebrate consumers. This
study examines the quantity and nutritional quality of early
successional benthic algal assemblages developing in an urban
stream subject to frequent flood events, and whether these
properties are affected by macroinvertebrate grazing pressure.
To determine the impact of these stressors on algal biomass
and nutritional composition, we employed a manipulative field
experiment using natural substrata to follow benthic algal early
succession with high-frequency sampling in an urban stream.
We hypothesized that (1) flood events will maintain early suc-
cessional algae to assemblages with lower nutritional quality
(as determined by EFA concentrations), while (2) assemblages
relieved from grazing pressure will have a greater nutritional
quality than grazed assemblages.

2. Methods
2.1 Site description

The Bronx River flows through an urbanized watershed (155 km2

area) in Westchester County, NY (USA), and is surrounded by me-
dium to high-density residential and commercial development,
with impervious surfaces averaging 34.4 per cent of the water-
shed land area (Westchester County Department of Planning
2007). The river receives inputs from multiple sources along its
course, including siltation, non-point source nutrients, and mu-
nicipal/industrial wastes (Smith et al. 2015). Although a major
roadway parallels the river along most of its length, there is a nar-
row riparian habitat that includes deciduous trees, parks, and
wetlands, which create intermittently shaded and open canopy
sections. This study was conducted in a 25-m long reach of the
river in Bronxville, NY (40.943671N, 73.837453W), which is also
within the Bronx River Parkway Reservation, which contains
planted vegetation and intact forest tracts maintained and pro-
tected by the county (Frankel 1999). In this region, the stream
width/depth ratio averages �18 (¼moderate to high; Rosgen
1994), the entrenchment ratio varies due to sections that have
been stabilized with concrete embankments, and sinuosity is low
to moderate. In our study reach, most of the streambed is sandy,
with occasional riffles composed mostly of cobbles, and has an
average canopy cover of 38.6 per cent. The hydrology is typified
by sharp and intense peaks in discharge following rain events
(U.S. Geographical Survey 2012), typical of urban watersheds (Paul
and Meyer 2001). In the year of this study (2010), 28 flood events
(defined as more than a 5-fold increase in discharge) were re-
corded. During the study period, floods occurred on days 11–12
(13–14 July), and days 15–18 (17–20 July) (judged by field observa-
tions and USGS hydrograph). Stage height data from a USGS
stream gauge (no. 01302020) 11 km downstream indicated that
discharge levels during two of these events were > 11 m3/s (vs.
mean base flow �0.8 m3/s). Colonization time was defined as the
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period between floods, which incorporates both flood frequency
and duration.

2.2 Field Procedures

Ninety-four smooth, cleaned cobbles (�15 cm in diameter) were
collected from the river to be used as experimental substrata for
periphyton colonization. Prior to their incubation in the river,
each cobble was scrubbed with a stiff brush under running wa-
ter and dried for 72 h at 80 �C to remove attached periphyton
and other organisms. Half were rimmed with petroleum gel to
exclude grazing invertebrates (after Dudley and D’Antonio
1991). Petroleum gel was re-applied after floods and rocks were
examined daily for evidence or presence of macroinvertebrates
during the study. Each was identified with a unique number
and a random number generator was used to create an eight-
by-twelve placement grid of the cobbles spaced �1 m apart in
the stream channel (Fig. 1).

Cobbles were placed in the stream on 2 July 2010. Daily sam-
pling began 4 days later to capture early-stage algal colonization
and proceeded until 21 July. Each day, eight rocks were selected
by random number (four with petroleum gel, four without) and
scraped with a razor blade and toothbrush to remove attached
algae. Sampled cobbles were not replaced in the river. Cobble di-
mensions were measured following algal collection based on an
assumed spheroid shape where the colonizable area was de-
fined as the upper 50 per cent of surface area of each (after
O’Brien and Wehr 2010). Qualitatively, grazing activity was
noted by the presence of macroscopic scrape marks or presence
of denuded areas in the biofilm. The volume of the collected al-
gal material was measured and stored in acid-washed 150 ml
polypropylene containers and stored on ice until return to the
laboratory (after O’Brien and Wehr 2010).

Temperature, pH, dissolved oxygen (DO), and specific con-
ductance were measured in situ using a Hach Hydrolab water
sonde (Loveland, CO, USA) (Table 1). Stream water was collected
for water chemistry analyses and filtered through a 0.2 lm pore-
size syringe filter, stored in 10 per cent HCl acid-washed poly-
propylene test tubes, preserved with 12.5 per cent H2SO4 to pH
< 2.0 and stored cold (4 �C (USEPA 1987).

2.3 Laboratory Procedures

Biofilm samples were processed on the same day as collection
for chlorophyll-a, EFA content, and C:N stoichiometry.

Chlorophyll-a samples were extracted in MgCO3-neutralized 90
per cent acetone and processed on a Shimadzu UV-1800 spec-
trophotometer (Columbia, MD, USA), and corrected for phaeo-
pigments using 0.1 M HCl (Lorenzen 1967; Jeffrey and Humphrey
1975). C and N concentrations were determined from collected
material dried at 80 �C in tin capsules and analyzed on a
Thermo Scientific Flash 2000 Organic Elemental Analyzer
(Pittsburg, PA, USA). EFA samples were filtered onto ashed GF/F
filters (GE/Whatman, Buckinghamshire, UK) and stored in
chloroform-washed borosilicate test tubes at �20 �C. Samples
were then extracted using chloroform:methanol (2:1), methyl-
ated using BF3, and transferred to a hexane solvent (Parrish
1999; Torres-Ruiz et al. 2007; Cashman et al. 2013). An internal
standard of nonadecanoic acid (19:0) was used as test of methyl-
ation efficiency and to assess constancy among sample runs
along with blank hexane samples. Samples were analyzed and
quantified using a Shimadzu GC-2014 fitted with a capillary col-
umn (Omegawax320, 30 m � 0.32 mm � 0.25 lm film thickness;
Supleco, Bellefonte, PA, USA). The temperature program has an
initial injection into a splitless inlet at a temperature of 220 �C
and oven temperature of 100 �C, followed by 1-h ramping to 260
�C in increments of 10 �C/10 min with helium as the carrier gas
to an FID (flame ionization detector). The Supelco 37 compo-
nent FAME mix was used as a standard for analysis and stan-
dard curves of the EFAs. Compounds with �18C were identified
and measured, since many biologically important fatty acids
are derived from 18C as a base molecule. Measurements of EFA
compounds were classified and summed into four groups;
Total, Rx3, Rx6, and ROther; the latter defined as all molecules
that were neither Rx3 or Rx6. The GC identified signal-peaks
that correspond to a minimum concentration of 0.011–0.024 mg/
m2, depending on the size of the molecule. Peaks below this de-
tection limit could not be reliably distinguished from back-
ground noise. Water chemistry samples were analyzed for SRP,
NO3

�/NO2
�, and NHþ4 on an Astoria-Pacific A2 flow-through

spectrophotometric nutrient analyzer (Clackamas, OR, USA) us-
ing standard methods (USEPA 1987) (Table 1).

2.4 Data analysis

After checking for homogeneity of variance and normality, data
were log-transformed to meet assumptions of subsequent tests
(Shapiro-Wilk analysis). Measurement results presented are
untransformed. We specifically tested the effects of (1)

Figure 1. Schematic diagram of the experimental cobble layout in the central stream riffle region of the Bronx River (repeated for 94 cobbles), with random placement

of cobbles of each treatment (G, grazed; U, ungrazed). Gray border around ‘U’ cobbles represents petroleum gel barrier. Four cobbles were destructively sampled from

each treatment per day.
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colonization time between floods and (2) grazing-pressure on
algal variables (biomass, C,N, and fatty acids) using single and
two-way MANOVAs for the entire duration and also for each
inter-flood growth period (Mertler and Vannatta 2013). Further
effects of colonization time and grazing on nutritional quality
were tested using two-way ANOVA (Sokal and Rohlf 1995) for
each interval. For samples collected in the final interval (follow-
ing the second flood event), a two-sample t-test was used.
Pearson’s correlations were used to determine the relationship
between chlorophyll-a and EFA concentrations across all dates,
and between elemental C, N and C:N. The a priori a level for all
tests was set at a¼ 0.05. All statistical analyses were conducted
using SYSTAT 13 (Systat Software, Inc., Chicago, IL, USA).

3. Results
3.1 Benthic algal biomass

Two major flood events were recorded in the Bronx River during
the study, on days 11–12 (13–14 July), and days 15–18 (17–20
July). Overall, colonization time (defined as the age of the algal
assemblage between floods) had a significant influence
(F8,50¼2.813, P¼ 0.012) on algal biomass (chlorophyll-a concen-
tration), while differences due to grazing treatment were largely
non-significant (F2,50¼3.463, P¼ 0.069). During the first coloniza-
tion period (6–12 July), colonization time was a significant factor
in differences between chlorophyll-a levels (F5,32¼5.280,
P¼ 0.001), while grazing pressure had no significant effect
(F1,32¼3.042, P¼ 0.090). Benthic algae experienced a 37 per cent
decrease in biomass following the first flood event. Following
this decline (the second colonization period: 15–16 July), neither
colonization time nor grazing had a significant effect on benthic
algal biomass (P >> 0.05). Following the second flood event, al-
gal biomass declined by 20 per cent. Overall, algal biomass (as
chlorophyll-a) on most dates was modestly greater (�17–52 per
cent) on grazed cobbles than on those protected from inverte-
brate grazers (Fig. 2), although no statistically significant differ-
ence between grazed and ungrazed treatments was detected
(P> 0.05). No visible evidence of grazing was noted (presence of
scraped or denuded areas on each rock) on petroleum gel-
rimmed cobbles, but denuded areas and egg clusters were ob-
served on untreated cobbles.

3.2 Biofilm nutrient stoichiometry

Biofilms on ungrazed cobbles had between 4 and 60 per cent
greater concentrations of C, and 4–46 per cent greater N content
than assemblages on grazed cobbles. In the youngest

assemblages (4–6-days old), biofilms in the grazed treatments
had C:N ratios 20–50 per cent less than ungrazed assemblages.
This difference changed over time. Older ungrazed biofilms (�7-
days old) had a C:N ratio averaging of �2.6 per cent less than
those exposed to benthic grazers (Table 2). C:N stoichiometry
also varied before and after flood events. C and N concentra-
tions generally increased following early flood events, but this
trend differed with grazing treatment. For example, average C
content increased by 55 per cent, and N by 60 per cent during
the first flood event on grazed cobbles, but only by 17 per cent
(C) and 14 per cent (N) on ungrazed cobbles. There were lesser
effects of the first flood, with C and N increases of only �5 per
cent. Later, following the second flood, C and N content de-
creased by �15 per cent (C) and �20 per cent (N) across both
grazing treatments.

3.3. EFA profiles

Colonization time (periods between floods) also had a signifi-
cant effect on the essential fatty acid (EFA) concentration of bio-
films over the duration of the study (F8,50¼2.606, P¼ 0.019). On
ungrazed substrata, the first flood resulted in a decrease in total
EFAs by 56 per cent (1.8 mg/m2), and the second by 50 per cent
(3.4 mg/m2). Following the first flood, EFA concentration also de-
clined by 32 per cent (3.7 mg/m2) on cobbles exposed to grazers,
but increased by 38 per cent (2.0 mg/m2) after the second flood
(Fig. 3). Quantities of major fatty acid categories were also af-
fected by floods. Within the EFAs, colonization time (between
floods) explained most of the differences in concentrations of
total omega-3 (Rx3) FA in the assemblage (F8,50¼3.006,
P¼ 0.017), Rx6 (F8,50¼5.660, P< 0.001), as well as FA classified as
ROther (F8,50¼8.480, P< 0.001) (Fig. 3). Grazing treatments ex-
erted no overall significant effect on total EFA concentration
(F1,50¼0.306, P¼ 0.582). There was no consistent pattern or sta-
tistically significant effects detected in levels of Rx3, Rx6 or
ROther EFA categories between grazing treatments (all tests:
P> 0.05) (Fig. 3).

Concentrations of key individual EFA compounds varied
among both treatments and colonization time (Figs 4 and 5).
Most saturated fatty acids, such as 18:0 (which was most consis-
tently present), varied little among biofilm assemblages over
time. But unsaturated, biochemically important compounds, in-
cluding a-linolenic acid (ALA 18:3x3 (ALA)) (F8,50¼2.404,
P¼ 0.028), (ARA 20:4x6) (F8,50¼6.460, P< 0.001), (EPA 20:5x3)
(F8,50¼9.247, P< 0.001), and (DHA 22:6x3) F8,50¼4.197, P¼ 0.001),
all varied significantly with colonization time. Linoleic acid (LIN
18:2x6) was not significantly different over time (F8,50¼2.877,
P¼ 0.010). Concentrations of these compounds were never

Table 1. Summary of environmental measurements made during days when benthic algal assemblages were collected. Flood events occurred
on 13-14 July and 17-20 July.

Factor 6 July 7 July 8 July 9 July 11 July 12 July 15 July 16 July 21 July

Temp (�C) 26.73 27.76 27.24 26.23 25.26 26.64 23.58 25.65 25.56
Velocity (m/s) 0.38 0.37 0.21 0.34 0.36 0.37 0.66 0.22 0.38
Cond. (mS/cm) 1.15 1.16 1.16 1.17 1.16 1.13 0.41 0.57 0.46
pH 7.69 7.69 7.63 7.62 7.44 7.56 7.43 7.41 7.33
DO (mg/L) 6.39 6.06 5.57 5.49 5.55 5.99 7.24 6.08 6.16
NHþ4 (mg-N/L) 0.21 0.18 0.16 0.21 0.26 0.25 0.24 0.30 0.23
NO�3 (mg-N/L) 0.54 0.50 0.48 0.51 0.40 0.35 0.66 0.64 0.59
SRP (lg-P/L) 31.3 41.7 36.6 179.4 32.4 383.5 392.4 402.6 46.7
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Figure 2. Mean concentrations chlorophyll-a over time and by grazing treatment. Error bars are 6 1 SE. Arrows between sets of bars indicate flood events (time scale is

non-linear). Each mean is composed of four cobbles that were destructively sampled from each treatment per day. Statistics in bold are significant.

Table 2. Daily averages for algal C, N, and C:N measured in each treatment group, with SE

Day 6 July 7 July 8 July 9 July

Treatment Mean SE Mean SE Mean SE Mean SE

C mmol/m2 Grazed 138.1 62.6 305.1 105.7 147.8 11.3 310.2 41.8
Ungrazed 352.2 120.2 317.9 62.3 342.2 52.8 340.2 74.8

N mmol/m2 Grazed 7.5 3.1 21.7 7.4 18.3 1.5 42.5 5.1
Ungrazed 11.7 3.9 17.7 3.6 33.7 7.6 49.7 9.8

C:N Grazed 16.0 5.6 14.4 2.3 8.2 1.0 7.3 0.2
Ungrazed 31.7 7.0 18.0 0.3 11.7 3.0 6.8 0.3

Day 11 July 12 July 15 July 16 July 21 July

Treatment Mean SE Mean SE Mean SE Mean SE Mean SE

C mmol/m2 Grazed 482.0 66.8 314.5 46.4 326.6 67.3 251.9 42.5 210.6 54.6
Ungrazed 397.8 64.6 415.8 69.5 302.0 87.3 279.8 69.7 244.6 21.7

N mmol/m2 Grazed 67.8 8.5 49.0 5.7 46.9 8.9 40.1 6.9 33.3 10.6
Ungrazed 56.8 8.2 65.5 10.0 43.8 11.5 44.6 10.1 34.9 1.6

C:N Grazed 7.1 0.2 6.4 0.2 6.9 0.2 6.4 0.6 29.1 22.9
Ungrazed 7.0 0.2 6.4 0.4 6.7 0.3 6.3 0.5 7.1 0.9

Four cobbles were analyzed in each treatment per day.

Figure 3. Mean amount of total algal EFA compounds with >18C, classified by structural category: Rx3, Rx6, and ROther compounds. Bars are paired by grazing treat-

ment: G, Grazed; U, Ungrazed. Arrows between sets of bars indicate flood events. Time scale is not linear. Each mean is composed of four cobbles that were destruc-

tively sampled from each treatment per day. Statistics in bold are significant.

Flood events can reduce key fatty acid content of early-stage benthic algal assemblages | 5

D
ow

nloaded from
 https://academ

ic.oup.com
/jue/article-abstract/2/1/juw

002/2624134 by D
aem

en C
ollege user on 18 Septem

ber 2018



significantly affected by the presence or absence of invertebrate
grazers (P> 0.05).

Due to very low algal biomass in the first few days of growth
on bare substrata, individual EFAs were detectable only after a
period of continued colonization (Fig. 4). The base molecule
stearic acid (18:0) was detected in all assemblages over time, but
varied in concentration over the course of the study, with peak
concentrations in the youngest assemblages and having

variable, lower concentrations in progressively older assem-
blages (F8,50¼3.380, P¼ 0.004). ALA was present in low concen-
trations, however LIN was present in greater concentrations in
biofilms collected at the earliest stages of colonization (6 July),
but were present in larger quantities in remaining days.
Concentrations of highly unsaturated fatty acids derived from
those compounds (ARA derived from LIN, and EPA and DHA
from ALA) had inconsistent temporal patterns (Fig. 5). The first

Figure 4. Mean amount of key EFA compounds (a) stearic acid (18:0), (b) (ALA 18:3x3), and (c) (LIN 18:2x6). Bars are paired by grazed and ungrazed cobbles. Error bars

are 61 SE. Arrows between sets of bars indicate flood events. Time scale is not linear. Each mean is composed of four cobbles that were destructively sampled from

each treatment per day. Statistics in bold are significant.
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and second flood events resulted in significantly altered con-
centrations of several FA compounds, but with contrasting pat-
terns. During the first flood event, average concentrations of
18:0 (�0.24 mg/m2), ALA (�0.87 mg/m2), LIN (�0.09 mg/m2), and
DHA (�0.15 mg/m2) declined, although only DHA was found to
be significantly less (t-test, P¼ 0.005). EPA (þ0.02 mg/m2) and
ARA (þ0.01 mg/m2) increased in concentrations during this time

period, though the difference was not significant. During the
second flood, concentrations of nearly all EFA molecules de-
creased significantly (all P< 0.025) with the exception of 18:0
(P> 0.327) (Figs 4 and 5). Overall, the general trend exhibited by
these specific molecules was that simple compounds, such as
18:0, ALA, and LIN, were consistently detectible despite flood
disturbance, while more complex, essential compounds, like

Figure 5. Mean amount of key EFA compounds (a) (EPA 20:5x3), (b) (DHA 22:6x3), and (c) (ARA 20:4x6). Bars are paired by grazed and ungrazed cobbles. Error bars are 61

SE. Arrows between sets of bars indicate flood events. Time scale is not linear. Each mean is composed of four cobbles that were destructively sampled from each treat-

ment per day. Statistics in bold are significant.
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ARA, EPA, and DHA, decreased in concentration following se-
vere flood events.

3.4 Relationships between Biomass, nutrient
stoichiometry, and EFAs

There were weak, non-significant correlations between benthic
algal biomass (as chlorophyll-a) and EFA concentration of the
biofilm (Fig. 6). Both grazed (r¼ 0.305, P¼ 0.08) and ungrazed
(r¼ 0.32, P¼ 0.065) assemblages lacked a clear trend. Therefore,
a two-way MANOVA was used to determine if any underlying
relationships existed between algal biomass and EFAs as a
grouped variable (where the maximum variable distances of
both biomass and EFA are re-calculated as a single new variable,
Mertler and Vannatta 2013) and effects from grazing and coloni-
zation time (both separately and combined). The combination
of colonization time and grazing treatment had no effect on the
combined result of chlorophyll-a plus EFA (two-way MANOVA
Wilks’ Lambda, k¼ 0.191). However, MANOVAs examining the
singular effect of colonization time (k< 0.001) or grazing treat-
ment (k < 0.001) did indicate a significant effect on combined
chlorophyll-a and EFA response. During the first post-flood
growth period (6–12 July), there was similarly no significant
combined effect of colonization timeþ grazing treatment
(k¼ 0.310), but the analysis found separate significant effects of
grazing treatment (k< 0.001) and colonization time (k¼ 0.008) on
the combination of the chlorophyll-a plus EFA. Following the
second flood event, (15–16 July), time and grazing treatment had
a significant effect on the combined chlorophyll-a and EFA re-
sponse (k < 0.001), while separately, neither time (k¼ 0.179) nor
grazing treatment (k ¼ 0.094) had a significant individual effect.

Relationships observed between biofilm nutrient stoichiom-
etry and algal biomass were complex. Carbon content (mmol)
and chlorophyll-a (mg) concentrations per m2 of substratum co-

varied positively but correlated significantly only on cobbles ex-
posed to grazers (Fig. 7a). In contrast, N concentrations in bio-
films correlated positively and significantly with chlorophyll-a
in both the grazed and ungrazed treatments (Fig. 6b). Across
grazing treatments, total EFAs positively correlated only with
concentrations of C, but the relationship with N was non-
significant (Fig. 7d and e). The C:N ratio in periphyton was
weakly correlated with chlorophyll-a in the ungrazed treat-
ments, but not with fatty acid content (Fig. 7c and f).

4. Discussion
4.1 Emerging role of biochemical properties in
urban streams

Several studies confirm that the EFA, nutrient stoichiometry
(lower C:N), and protein content of algae make them a superior
food source to terrestrial detritus for aquatic consumers
(Lamberti 1996; Frost et al. 2002; Torres-Ruiz et al. 2007; Brett
et al. 2009). In urban streams subject to frequent flooding, re-
duced riparian buffers, and altered terrestrial inputs, algal sour-
ces, especially when present in limited amounts, may be a
critical food resource for aquatic consumers. Compounds spe-
cifically critical for consumers are the x3 fatty acids commonly
or solely found in algal cells, including, a-linoleic acid (ALA
18:3x3), (EPA 20:5x3), and (DHA 22:6x3), and the x6 fatty acids,
linoleic acid (LIN 18:2x6), and (ARA 20:4x6) The present study
demonstrated that the availability of these essential com-
pounds can be reduced by frequent and severe floods, which are
typical of urban streams.

This examination of early colonizing and flood-reduced as-
semblages indicates several significant effects of flood events
on both algal biomass and biochemistry of benthic biofilms.

Figure 6. Pearson correlations between chlorophyll-a and fatty acid content of benthic algae collected from experimental cobbles in the Bronx River. Data outliers are

included in this data presentation, though they were removed for statistical analysis. Trend lines are shown (solid, Grazed; dashed, Ungrazed). Statistics in bold are

significant.
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More complex EFAs that are primarily produced by algal species
tended to require longer time periods to be produced than the
time periods between the observed flood events. We also docu-
mented a few correlations between algal biomass and complex
biochemical compounds, such as EFAs, although benthic algal
nutritional quality never strongly tracked variation in algal bio-
mass. The highly stochastic and flood-prone nature of urban-
ized streams likely affected this relationship. Our data suggest
that although in the days immediately after an intense flood,
consumers may depend on lower quality detrital and/or micro-
bial food sources, several algal-based EFAs are detectable in the
assemblages within a week of a severe flood event. These pat-
terns also suggest that algal biomass alone may not be a

sufficient indicator of an adequate food supply for consumers.
Scouring is known to greatly reduce benthic algal biomass in
many streams (Peterson and Stevenson 1990; Stevenson 1990;
Francoeur et al. 1998; Francoeur and Biggs 2006). It may be that
in an urban system characterized by frequent disturbances,
early colonist taxa will persist at low levels over longer time pe-
riods, unlike that in some pristine streams that undergo longer-
term succession to other larger algal taxa (Power and Stewart
1987; Konrad and Booth 2005).

Benthic algal biomass measurements are routinely used to
assess anthropogenic disturbances, including urban flood
events (Porter-Goff et al. 2010), but few studies have examined
algal nutritional composition in response to such disturbances.

Figure 7. Pearson correlations between algae nutrient stoichiometry (C, N, C:N) and chlorophyll-a (a–c), and fatty acid concentration (d–f). Data outliers are included in

this data presentation, though they were removed for statistical analysis. G, Grazed; U, Ungrazed. Trend lines are shown (solid, Grazed; dashed, Ungrazed). Statistics in

bold are significant.
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Larson et al. (2013) observed that EFA concentrations in lake
phytoplankton were positively correlated with degree of urbani-
zation in the watershed. Extrapolation of this pattern to lotic
ecosystems is however problematic. A few stream studies have
identified how nutrient loading or reduced canopy may alter
EFA composition in stream assemblages, but the link to urbani-
zation is less clear (Cashman et al. 2013). Our study suggests
that while flood events may not greatly affect benthic algal bio-
mass, floods nonetheless alter and perhaps adversely affect
important biochemical properties of this basal food source. We
documented changes in the availability of essential com-
pounds, particularly ARA, EPA, and DHA, following flood events.
Additionally, while grazer-exclusion treatments and flood
events did not significantly affect algal biomass, we measured
greater concentrations of EFAs in grazed versus ungrazed as-
semblages. Taken as a whole, our data suggest that benthic al-
gal biomass and biochemical properties are not closely coupled
in streams. Despite this uncoupling, temporal dynamics of algal
fatty acid content in response to floods likely has a significant
effect on higher trophic levels. Although not considered here,
this variation in nutritional composition is likely paralleled by
changes in algal assemblage species composition. It has been
documented that assemblages with a high proportion of green
algae (e.g. streams with more stable flow regimes) can have
greater concentrations of ALA and LIN, while assemblages dom-
inated by diatoms (e.g. early stages) have greater concentrations
of EPA (Honeyfield and Maloney 2015).

Very few studies have examined the impact of an urban
landscape on the EFA composition of biofilms in streams. One
recent study observed that altered canopy cover and nutrients
affect the biochemical properties of established assemblages
(colonized for > 30 d) in one small suburban stream (Cashman
et al. 2013). Another demonstrated that increased nutrient in-
puts can result in greater EFA concentrations (Bo€echat et al.
2014). However, neither examined the influence of urban hydro-
logical patterns on nutritional properties of benthic algae. Our
data suggest that while biomass periodically can be low, greater
fatty acid composition in combination with lower C:N values
that are typical of benthic algae can create a high quality food
source for stream macroinvertebrates in urban streams.

4.2 Importance of stoichiometry

In this study, biofilms on both grazed and ungrazed cobbles had
high amounts of elemental C and N, and low C:N ratios (¼high
N source), indicating a potentially high-quality food source for
invertebrate grazers (Hillebrand and Sommer 1999; O’Brien and
Wehr 2010). The C:N values determined in this study (most val-
ues between 5 and 40) are consistent with those measured in
other urban streams (O’Brien and Wehr 2010; Tsoi et al. 2011;
Newcomer et al. 2012). C:N values of 5–10 are suggested to be
optimal for algal growth (Hillebrand and Sommer 1999), which
is consistent with findings in this study. We also documented
that assemblages protected from macroinvertebrate grazing
pressure showed a consistent increase in nutrient (nitrogen)
content. The lack of a negative effect of grazers on algal biomass
is not unusual. Wellnitz and Poff (2006) also observed increases
in algal growth under grazed conditions, while Leiss and
Hillebrand (2004) have described several mechanisms by which
grazing can increase algal accumulation. Furthermore, recent
surveys of the macroinvertebrate community along the Bronx
River found very low densities of macroinvertebrates, predomi-
nantly of pollution tolerant midge-larvae, crustaceans, and
worms (Smith et al. 2015). There simply may not be enough

invertebrates in the Bronx River to produce an effect. However,
if restoration efforts of urban streams are to be successful, then
all levels of food web biota must be considered in evaluation ef-
forts. In this study, it was nutrient content rather than biomass
that was most affected.

Several studies have found biochemical differences are likely
due to nutrient loading (Ram�ırez and Pringle 2006; Singer and
Battin 2007; Ventura et al. 2008), although the role of nutrient
loading and its effect on algal stoichiometry in urban streams
has not been adequately studied (Tsoi et al. 2011). In a study of
landscape features of urban areas that may influence stream
and algal characteristics, O’Brien and Wehr (2010) observed a
strong correlation between increasing human population den-
sity and greater benthic algal nutrient content and stoichiome-
try, although that study did not take into account temporal
changes due to floods. Previously, a meta-analysis of USGS
stream data confirmed that high values of algal chlorophyll
were related to increasing levels of urbanization (Dodds et al.
2002). However, increases in aqueous nutrient concentration
did not correspond with changes in benthic algal stoichiometry
or EFAs . In this study, stoichiometric C:N values for all benthic
algal assemblages decreased under the stress of the most severe
flood event, despite an increase in aqueous nutrient
concentrations.

4.3 Early colonizing benthic algal assemblages support
urban stream food webs

Our data indicate that flood events can result in significantly al-
tered EFA profiles (composition and concentration). Variable
food sources can have profound effects on consumers. Although
these young assemblages are not rich in biomass, they remain
an important source of EFAs in the Bronx River. In those studies
that have examined various effects on early-colonizing algal as-
semblages, most assemblages have been incubated for 2–3
weeks before measurements are made (Frost et al. 2007;
Kominoski et al. 2007; Rothlisberger et al. 2008). These studies
may have missed critical periods when recolonization takes
place. By taking daily measurements shortly after initial coloni-
zation, we have documented important effects on the biochemi-
cal composition of early-colonizing assemblages, which may be
periodically common in urban streams and therefore an impor-
tant food source in urbanized landscapes. Further work is there-
fore needed, as early colonists may be typical in many urban,
flood-prone systems. This study suggests that flood events in ur-
ban streams significantly alter the nutritional quality of these
early colonizing assemblages, even while changes in biomass
may be more resistant to frequent flood events.
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