Department

Natural Sciences

Document Type

Article

Publication Source

Journal of Orthopaedic Surgery and Research. Volume 12, Issue 1, Page 69.

Publication Date

2017-05-04

Abstract

Background: Heterotopic ossification (HO) is a significant problem for wounded warriors surviving high-energy blast injuries; however, currently, there is no biomarker panel capable of globally characterizing, diagnosing, and monitoring HO progression. The aim of this study was to identify biomarkers for HO using proteomic techniques and blood serum.

Methods: Isobaric tags for relative and absolute quantitation (iTRAQ) was used to generate a semi-quantitative global proteomics survey of serum from patients with and without heterotopic ossification. Leveraging the iTRAQ data, a targeted selection reaction monitoring mass spectrometry (SRM-MS) assay was developed for 10 protein candidates: alkaline phosphatase, osteocalcin, alpha-2 type I collagen, collagen alpha-1(V) chain isoform 2 preprotein, bone sialoprotein 2, phosphatidate phosphatase LPIN2, osteomodulin, protein phosphatase 1J, and RRP12-like protein.

Results: The proteomic survey of serum from both healthy and disease patients includes 1220 proteins and was enriched for proteins involved in the response to elevated platelet Ca+2, wound healing, and extracellular matrix organization. Proteolytic peptides from three of the ten SRM-MS proteins, osteocalcin preprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein from serum, are potential clinical biomarkers for HO.

Conclusions: This study is the first reported SRM-MS analysis of serum from individuals with and without heterotopic ossification, and differences in the serum proteomic profile between healthy and diseased subjects were identified. Furthermore, our results indicate that normal wound healing signals can impact the ability to identify biomarkers, and a multi-protein panel assay, including osteocalcin preproprotein, osteomodulin precursor, and collagen alpha-1(v) chain isoform 2 preprotein, may provide a solution for HO detection and monitoring.

Keywords

collagen alpha-1(v), heterotopic ossification, Osteocalcin, Osteomodulin, SRM-MS

DOI

10.1186/s13018-017-0567-2

Comments

© 2017 Edsberg et. al.

This is an open access article, made available under the under the CC-BY-NC-ND 4.0 license. http://creativecommons.org/licenses/by-nc-nd/4.0/

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.